

 Navigation

 	
 index

 	Ahoy 1.1.0 documentation

 [image: AHOY logo]

AHOY! - Automate and organize your workflows, no matter what technology you use.

Ahoy is command line tool that gives each of your projects their own CLI app with with zero code and dependencies.

Simply write your commands in a yaml file and ahoy gives you lots of features like:

	a command listing

	per-command help text

	command tab completion

	run commands from any subdirectory

Essentially, ahoy makes is easy to create aliases and templates for commands that are useful. It was specifically created to help with running interactive commands within docker containers, but it’s just as useful for local commands, commands over ssh, or really anything that could be run from the command line in a single clean interface.

Examples

Say you want to import a sql database running in docker-compose using another container called cli. The command could look like this:

docker exec -i $(docker-compose ps -q cli) bash -c 'mysql -u$DB_ENV_MYSQL_USER -p$DB_ENV_MYSQL_PASSWORD -h$DB_PORT_3306_TCP_ADDR $DB_ENV_MYSQL_DATABASE' < some-database.sql

With ahoy, you can turn this into

ahoy mysql-import < some-database.sql

More Examples

FEATURES

	Non-invasive - Use your existing workflow! It can wrap commands and scripts you are already using.

	Consitent - Commands always run relative to the .ahoy.yml file, but can be called from any subfolder.

	Visual - See a list of all of your commands in one place, along with helpful descriptions.

	Flexible - Commands are specific to a single folder tree, so each repo/workspace can have its own commands

	Command Templates - Args can be dropped into your commands using {{args}}

	Fully interactive - your shells (like mysql) and prompts still work.

	Self-Documenting - Commands and help declared in .ahoy.yml show up as ahoy command help and bash completion of commands (see below)

INSTALLATION

OSX

Using Homebrew:

brew tap devinci-code/tap
brew install ahoy
For v2 which is still alpha (see below)
brew install ahoy --HEAD

Linux

Download and unzip the latest release and move the appropriate binary for your plaform into someplace in your $PATH and rename it ahoy

Example:

sudo wget -q https://github.com/devinci-code/ahoy/releases/download/1.1.0/ahoy-`uname -s`-amd64 -O /usr/local/bin/ahoy && sudo chown $USER /usr/local/bin/ahoy && chmod +x /usr/local/bin/ahoy

Bash / Zsh Completion

For Zsh, Just add this to your ~/.zshrc, and your completions will be relative to the directory you’re in.

complete -F "ahoy --generate-bash-completion" ahoy

For Bash, you’ll need to make sure you have bash-completion installed and setup. On OSX with homebrew it looks like this:

brew install bash bash-completion

Now make sure you follow the couple installation instructions in the “Caveats” section that homebrew returns. And make sure completion is working for git for instance before you continue (you may need to restart your shell)

Then, (for homebrew) you’ll want to create a file at /usr/local/etc/bash_completion.d/ahoy with the following:

#! /bin/bash

: ${PROG:=$(basename ${BASH_SOURCE})}

_cli_bash_autocomplete() {
 local cur opts base
 COMPREPLY=()
 cur="${COMP_WORDS[COMP_CWORD]}"
 opts=$(${COMP_WORDS[@]:0:$COMP_CWORD} --generate-bash-completion)
 COMPREPLY=($(compgen -W "${opts}" -- ${cur}))
 return 0
 }

 complete -F _cli_bash_autocomplete $PROG

restart your shell, and you should see ahoy autocomplete when typing ahoy [TAB]

USAGE

Almost all the commands are actually specified in a .ahoy.yml file placed in your working tree somewhere. Commands that are added there show up as options in ahoy. Here is what it looks like when using the example.ahoy.yml file [https://github.com/devinci-code/ahoy/blob/master/examples/examples.ahoy.yml]. To start with this file locally you can run ahoy init.

$ ahoy
NAME:
 ahoy - Send commands to docker-compose services

USAGE:
 ahoy [global options] command [command options] [arguments...]

VERSION:
 0.0.0

COMMANDS:
 vdown Stop the vagrant box if one exists.
 vup Start the vagrant box if one exists.
 start Start the docker compose-containers.
 stop Stop the docker-compose containers.
 restart Restart the docker-compose containers.
 drush Run drush commands in the cli service container.
 bash Start a shell in the container (like ssh without actual ssh).
 sqlc Connect to the default mysql database. Supports piping of data into the command.
 behat Run the behat tests within the container.
 ps List the running docker-compose containers.
 behat-init Use composer to install behat dependencies.
 init Initialize a new .ahoy.yml config file in the current directory.
 help, h Shows a list of commands or help for one command

GLOBAL OPTIONS:
 --help, -h show help
 --generate-bash-completion
 --version, -v print the version

Version 2

All new features are being added to the v2 (master) branch of ahoy which is still in alpha and will have breaking changes with v1 ahoy files, so to use ahoy v2, you’ll need to do the following:

	Upgrade to the ahoy v2 binary which currently needs to be compiled from source. If you are using homebrew, you can use that to upgrade to v2 using the following:

 brew uninstall ahoy # Required or you'll get errors
 brew upgrade # Updates the tap
 brew install ahoy --HEAD # Installs ahoy by compiling the latest from the master branch
 ahoy # You should see full version that you're using.

	Change your ahoyapi: v1 lines to ahoyapi: v2

New Features in v2

	Implements a new feature to import mulitple config files using the “imports” field.

	Uses the “last in wins” rule to deal with duplicate commands amongst the config files.

commands:
 list:
 usage: List the commands from the imported config files.
 imports:
 - ./confirmation.ahoy.yml
 - ./docker.ahoy.yml
 - ./examples.ahoy.yml

Planned v2 features

	Provide “drivers” or “plugins” for bash, docker-compose, kubernetes (these systems still work now, this would just make it easier)

	Do specific arg replacement like {{arg1}} and enable specifying specific arguments and flags in the ahoy file itself to cut down on parsing arguments in scripts.

	Support for more built-in commands or a “verify” yaml option that would create a yes / no prompt for potentially destructive commands. (Are you sure you want to delete all your containers?)

	Pipe tab completion to another command (allows you to get tab completion)

 Copyright 2016, Devinci.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Ahoy 1.1.0 documentation

Index

 Copyright 2016, Devinci.
 Created using Sphinx 1.3.5.

 Multiple-line-commands.html

 Navigation

 		
 index

 		Ahoy 1.1.0 documentation »

 This actually works as-is using the yaml | pipe syntax..

...
 commands:
 my-multiline-command:
 cmd: |
 echo "1 - If this passes" &&
 echo "2 - Then do this" ||
 echo "3 - Or do this if 1 or 2 fails (returns non-zero)"

You can even write full scripts:

...
 commands:
 confirm:
 cmd: |
 read -r -p "{{args}} [y/N] " response
 if [$response = y]
 then
 true
 else
 false
 fi

If you want to do multiple lines that append together (a really long string perhaps), you can use the Yaml - dash character.

...
 commands:
 echo-long-string:
 cmd: -
 echo "This is a really really
 really really long string"

 © Copyright 2016, Devinci.
 Created using Sphinx 1.3.5.

_static/up.png

Home.html

 Navigation

 		
 index

 		Ahoy 1.1.0 documentation »

 Welcome to the ahoy wiki!

Ahoy command snippets examples

		Basic Tips and Troubleshooting

		Confirmation

		Controlling Execution

		Multiple line commands

Basics

The simplest way to start using ahoy is to create a basic .ahoy.yml file in your current directory like so:

ahoyapi: v1
usage: DKAN cli app for development using ahoy.
commands:
 echo:
 usage: Simply echo all the arguments
 # Note that {{args}} will be replaced with the string of all arguments passed
 cmd: echo "{{args}}"

Now if we simply run ahoy, it will find that file and output the help text and a list of commands.

$ ahoy
NAME:
 ahoy - DKAN cli app for development using ahoy.
USAGE:
 ahoy [global options] command [command options] [arguments...]
COMMANDS:
 echo Simply echo all the arguments
 init Initialize a new .ahoy.yml config file in the current directory.
GLOBAL OPTIONS:
 --verbose, -v Output extra details like the commands to be run. [$AHOY_VERBOSE]
 --file, -f Use a specific ahoy file.
 --help, -h show help
 --version print the version
 --generate-bash-completion
VERSION:
 0.0.0

Now if we call ahoy -v echo "Do I hear an echo?" ..

ahoy -v echo "Do I hear an echo?"
2016/01/13 14:03:54 ===> AHOY echo from : echo "Do I hear an echo?"
Do I hear an echo?

Writing More Complex Commands

Let’s show an example of using bash scripts AND reusing ahoy commands

ahoyapi: v1
commands:
 confirm:
 cmd: |
 read -r -p "{{args}} [y/N] " response
 if [$response = y]; then
 true
 else
 false
 fi
 # This will keep the confirm command from showing up in the help text.
 hide: true
 meaning-of-life:
 cmd: |
 ahoy confirm "Are you sure you want to know?" &&
 # Run this if confirm returns true
 echo The meaning of life is 42 ||
 # Run this if confirm returns false
 echo "OK, you don't want to know, skipping..."

$ ahoy meaning-of-life
Are you sure you want to know? [y/N] y
The meaning of life is 42

$ ahoy meaning-of-life
Are you sure you want to know? [y/N] n
OK, you don't want to know, skipping...

##Importing commands from other ahoy files.

Another powerful feature is importing commands from other files.
###Subcommands
Ahoy allows you to import an entire yml file full of commands by using import: relative path to file instead of cmd. This is useful to organize commands into groups.
###Direct import
You can also import single commands by calling ahoy and setting the path of the .ahoy file you want to use using the -f flag.

#sub.ahoy.yml
ahoyapi: v1
commands:
 whoami:
 #Simple unix command that displays the logged in user.
 cmd: whoami

#.ahoy.yml
ahoyapi: v1
commands:
 # Imports a single ahoy command called whoami and changes the name to direct example
 direct-example:
 usage: Runs the whoami command directly
 cmd: ahoy -f sub.ahoy.yml whoami
 # Imports all commands in the file
 import-example:
 usage: Loads all commands in a subfile.
 import: sub.ahoy.yml

$ ahoy direct-example
fcarey #or whatever your user name is

$ ahoy import-example whoami
fcarey #or whatever your user name is

#Shows help text for imported subcommands
$ahoy import-example
NAME:
 ahoy - Creates a configurable cli app for running commands.
USAGE:
 ahoy [global options] command [command options] [arguments...]
COMMANDS:
 whoami
 init Initialize a new .ahoy.yml config file in the current directory.
GLOBAL OPTIONS:
 --verbose, -v Output extra details like the commands to be run. [$AHOY_VERBOSE]
 --file, -f Use a specific ahoy file.
 --help, -h show help
 --version print the version
 --generate-bash-completion
VERSION:
 0.0.0

 © Copyright 2016, Devinci.
 Created using Sphinx 1.3.5.

_static/minus.png

Controlling-Execution.html

 Navigation

 		
 index

 		Ahoy 1.1.0 documentation »

 You can control execution of multiple bash commands with a single ahoy command like so:

		&& means continue if success (exit 0)

		; means always run the next command

		|| means to run the next command if the previous one failed. (exit non-zero)

Example:

...
 commands:
 only-run-1-2-and-4:
 cmd: |
 echo "1 - If this passes" &&
 echo "2 - Then do this" ||
 echo "3 - Or do this if 1 or 2 fails (returns non-zero)" ;
 echo "4 - Do this no matter what"

 © Copyright 2016, Devinci.
 Created using Sphinx 1.3.5.

_static/comment.png

_static/comment-bright.png

_static/up-pressed.png

search.html

 Navigation

 		
 index

 		Ahoy 1.1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Devinci.
 Created using Sphinx 1.3.5.

_static/plus.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

_static/down.png

Confirmation.html

 Navigation

 		
 index

 		Ahoy 1.1.0 documentation »

 Confirmation allows you to specify a string to prompt the user with and then control the execution of your command. If they type “y”, the command will return true (exit 0), otherwise it will return false (exit 1).

...
 commands:
 confirm:
 cmd: |
 read -r -p "{{args}} [y/N] " response
 if [$response = y]
 then
 true
 else
 false
 fi

Examples

Simple confirmation

$ ahoy confirm "Are you sure you want to do this?"
Are you sure you want to do this? [y/N]
$ y

Using confirmation with other commands. See [[Controlling Execution]]

$ ahoy confirm "Delete your /tmp directory?" && \
 rm -rf /tmp/* || \
 echo "Skipping..."
 Delete your /tmp directory? [y/N]
$ n # (or anything besides y)
 Skipping...

 © Copyright 2016, Devinci.
 Created using Sphinx 1.3.5.

Basic-Tips-and-Troubleshooting.html

 Navigation

 		
 index

 		Ahoy 1.1.0 documentation »

 Some things to keep in mind when using ahoy:

		You always need a .ahoy.yml file - This is where ahoy gets it’s configuration. If the current directory doesn’t have that file, it will recursively look at all the parent directories for one until it either finds it, or fails with an error. This means that each project should have an ahoy file at it’s root to work, but you can be in any subdirectory and ahoy will still find the right file.

		Commands are always run from the directory where .ahoy.yml is - That’s really helpful because no matter where you run ahoy from, the commands will be run from a consistent directory.

		Bash is what is actually running the commands - everything that’s within a “cmd” definition is piped into bash, so whatever you can do with bash, you can do in an ahoy command if you want to create something more complex than a single one-line command. This also means that each command runs in a bash subshell, which is usually fine since all environment variables are copied in, but you won’t be able to affect the parent shell.. for example, changing the user’s current directory or ENV variables.

		Easily debug using –verbose - You can always get the details of what’s actually being run in a command with the -v or the –verbose flag.

		Subcommands come from imported ahoy.yml files - You can import another command files that use the ahoy yaml format as subcommands. This is useful to split up types of commands into different files and so the list of commands isn’t as long. For example, we do this with the dkan command, which just imports dkan/.ahoy/dkan.ahoy.yml. All those commands are then listed by typing ahoy dkan

		Ahoy uses the {{args}} placeholder with a commands arguments - Similar to Drupal templates, ANY arguments added after a command are passed into {{args}}. If you use {{args}} in your command, the actual arguments will be swapped out before the command is run. If {{args}} is used multiple times in a command, all instances are replaced. This is necessary so we can pass arguments along into the script, but adds a lot of flexibility.

		You can use ahoy commands within other commands - This is really powerful! You can define helper commands to further abstract where commands are run (ie. locally vs ssh, vs docker), or simple utilities like ahoy confirm “question that will prompt the user for a yes or no answer” . You can think of these kind of like reusable functions. If you want to hide these utility commands, you can set hide: true in your ahoy file.

		Quotes can be tricky - Sometimes when passing one command into subcommands, you might “loose” your quotes. Try using –verbose to debug what’s happening first, and experiment with both single and double quotes. Keep in mind how the yaml spec processes and escapes quotes. We recommend not starting your command with quotes unless necessary. Multi-line commands (scripts) are best done using cmd: | which allows you to use multiple lines without worrying about quotes.

		Using Environment variables - You can use environment variables from within ahoy commands, but you sometimes need to pay attention to quotes, especially if the ENV variable you intend to use is from another machine (docker, ssh).

		Check your yaml formatting - The script will check your yaml formatting and throw an error if it’s not right, but it doesn’t check everything. Make sure your whitespace and structure are correct if you get yaml errors.

 © Copyright 2016, Devinci.
 Created using Sphinx 1.3.5.

_static/comment-close.png

